1 Tezahn

Smedds Thesis Statements

1. Stuchlik M, Stanislav Z. Lipid based vehicle for oral drug delivery. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2001;145:17–26.http://www.ncbi.nlm.nih.gov/pubmed/12426768. [PubMed]

2. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59:667–676.http://dx.doi.org/10.1016/j.addr.2007.05.006. [PubMed]

3. Schneider M. PhD Thesis. University of Basel; Switzerland: 2008. Investigation of the transport of lipophilic drugs in structurally diverse lipid formulations through caco-2 cell monolayer using mathematical modeling.

4. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water-soluble drugs. Adv Drug Deliv Rev. 1997;25:103–128.http://dx.doi.org/10.1016/S0169-409X(96)00494-2.

5. Kossena GK, Charman WN, Boyd BJ, Dunstan DE, Porter CJH. Predicting drug solubilization patterns in the gastrointestinal tract after administration of lipid based delivery systems: A phase diagram approach. J Pharm Sci. 2004;93:332–348.http://dx.doi.org/10.1002/jps.10554. [PubMed]

6. Shackleford DM, Porter CJH, Charman WN. Problems addressable by prodrugs. In: Stell VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW, editors. Prodrugs: Challenges and Rewards. Springer; AAPS Press; 2006. p. 657. http://dx.doi.org/10.1007/978-0-387-49785-3_18.

7. Dahan A, Hoffman A. Rationalizing and selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water-soluble drugs. J Control Release. 2007;129:1–10.http://dx.doi.org/10.1016/j.jconrel.2008.03.021. [PubMed]

8. Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH. J Pharm Sci. 2000;86:269–282.http://dx.doi.org/10.1021/js960085v. [PubMed]

9. Hoffman NE, Simmonds WJ, Morgan RG. The effect of mecellar solubilization on mucosal metabolism of absorbed glyceryl-l-monoether. Aust J Exp Biol Med Sci. 1972;50:803–812.http://dx.doi.org/10.1038/icb.1972.77. [PubMed]

10. Simmonds WJ. The role of micellar solubilization in lipid absorption. Aust J Exp Biol Med Sci. 1972;50:403–421.http://dx.doi.org/10.1038/icb.1972.35. [PubMed]

11. Westergaard H, Dietschy JM. The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into intestinal mucosal cell. J Clin Invest. 1976;58:97–108.http://dx.doi.org/10.1172/JCI108465. [PMC free article][PubMed]

12. Shiau YF. Mechanism of intestinal fatty acid uptake in rat: the role of an acidic microclimate. J Physiol. 1990;421:463–474.http://www.ncbi.nlm.nih.gov/pubmed/2348399. [PMC free article][PubMed]

13. Keleman RJ, Shaiu YF, Reed MA. Acidic mucin layer facilitates micelle dissociation and fatty acid diffusion. Am J Physiol. 1990;259:G671–675.http://www.ncbi.nlm.nih.gov/pubmed/2221076. [PubMed]

14. Embleton JK, Pouton CW. Structure and function of gastrointestinal lipases. Adv Drug Deliv Rev. 1997;25:15–32.http://dx.doi.org/10.1016/S0169-409X(96)00488-7.

15. Shah NH, Carvajal MT, Patel CI. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106:15–23.http://dx.doi.org/10.1016/0378-5173(94)90271-2.

16. Charman SA, Charman WN, Rogge MC. Self-emulsifying drug delivery systems: Formulations and biopharmaceutical evaluation of an investigational lipophilic compound. Pharm Res. 1992;9:87–93.http://dx.doi.org/10.1023/A:1018987928936. [PubMed]

17. Pouton CW. Self-emulsifying drug delivery systems: Assessment of the efficacy of emulsification. Int J Pharm. 1985;27:335–348.http://dx.doi.org/10.1016/0378-5173(85)90081-X.

18. Kovarik JM, Meuller EA, Van Bree JB. Reduced inter and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83:444–446.http://dx.doi.org/10.1002/jps.2600830336. [PubMed]

19. Porter CJH, Charman WN. Uptake of drugs into intestinal lymphatics after oral administration. Adv Drug Deliv Rev. 1997;25:71–90.http://dx.doi.org/10.1016/S0169-409X(96)00492-9.

20. Porter CJH, Charman SA, Charman WN. Lymphatic transport of halofantrine in the triple cannulated anesthesized rat model: Effect of lipid vehicle dispersion. J Pharm Sci. 1996;85:351–356.http://dx.doi.org/10.1021/js950221g. [PubMed]

21. Hauss DJ. Lipid-based systems for oral drug delivery: Enhancing the bioavailability of poorly water-soluble drugs. Am Pharm Rev. 2002;5:22–28.

22. Armstrong NA, James KC. Drug release from lipid-based dosage forms. II. Int J Pharm. 1980;6:195–204.http://dx.doi.org/10.1016/0378-5173(80)90104-0.

23. Eccleston GM. Microemulsions. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. Vol. 9. Marcel Dekker; New York: 1992. pp. 375–421.

24. Attwood D. Microemulsions. In: Krueter J, editor. Colloidal Drug Delivery Systems. Marcel Dekker; New York: 1994. pp. 31–71.

25. Swenson ES, Curatolo WJ. Intestinal permeability enhancement for proteins, peptides and other polar drugs: Mechanisms and potential toxicity. Adv Drug Deliv Rev. 1992;8:39–92.http://dx.doi.org/10.1016/0169-409X(92)90015-I.

26. Osborne DW, Middleton CA, Rogers RL. Alcohol-free microemulsions. J Dispersion Sci Technol. 1988;9:415–423.http://dx.doi.org/10.1080/01932698808943999.

27. Aungst BJ, Nguyen NH, Rogers NJ. Amphiphilic vehicles improve the oral bioavailability of a poorly soluble HIV protease inhibitor at high doses. Int J Pharm. 1997;156:79–88.http://dx.doi.org/10.1016/S0378-5173(97)00189-0.

28. Szuts EZ, Harosi FI. Solubility of retinoids in water. Arch Biochem Biophys. 1991;87:297–304.http://dx.doi.org/10.1016/0003-9861(91)90482-X. [PubMed]

29. Charman WN, Stella VJ. Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm. 1986;34:175–178.http://dx.doi.org/10.1016/0378-5173(86)90027-X.

30. Dumanli I. Master Thesis. University of Rhode Island; 1998. Characterization of gelling phenomenon of a lipid-based formulation.

31. Chakrabarti S, Belpaire FM. Bioavailability of Phenytoin in lipid containing dosage forms in rats. J Pharm Pharmacol. 1978;30:330–331.http://dx.doi.org/10.1111/j.2042-7158.1978.tb13247.x. [PubMed]

32. Abrams LS, Weintraub HS, Patrick JE, McGuire JL. Comparative bioavailability of lipophilic steroid. J Pharm Sci. 1978;6:1287–1290.http://dx.doi.org/10.1002/jps.2600670925. [PubMed]

33. Yamoka Y, Robert RD, Stella VJ. Low melting phenytoin prodrugs as alternative oral delivery modes for phenytoin: A model for other high melting sparingly water soluble drugs. J Pharm Sci. 1983;72:400–405.http://dx.doi.org/10.1002/jps.2600720420. [PubMed]

34. Stella V, Haslam J, Yata N, Okada H, Lindenbaum S, Higuchi T. Enhancement of bioavailability of a hydrophobic amine antimalarial by formulation with oleic acid in a soft gelatin capsule. J Pharm Sci. 1978;67:1375–1377.http://dx.doi.org/10.1002/jps.2600671011. [PubMed]

35. Tokumura T, Tatsuishi K, Kayano M, Machida Y, Nagai T. Enhancement of oral bioavailability of cinnarizine in oleic acid in beagle dogs. J Pharm Sci. 1987;76:286–288.http://dx.doi.org/10.1002/jps.2600760404. [PubMed]

36. Patton TF. Effect of various vehicles and vehicles volumes on oral absorption of triamterene in rats. J Pharm Sci. 1981;70:1131–1134.http://dx.doi.org/10.1002/jps.2600701010. [PubMed]

37. Myers RA. Systemic bioavailability of penclomedine from oil in water emulsion administer intraduodenally to rats. Int J Pharm. 1992;78:217–226.http://dx.doi.org/10.1016/0378-5173(92)90374-B.

38. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications.

1. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82. doi: 10.1016/j.biopha.2004.02.001.[PubMed][Cross Ref]

2. Obitte NC, Rohan LC, Adeyeye CM, Parniak MA, Esimone CO. The utility of self-emulsifying oil formulation to improve the poor solubility of the anti HIV drug CSIC. AIDS Res Ther. 2013;10(1):14. doi: 10.1186/1742-6405-10-14.[PMC free article][PubMed][Cross Ref]

3. Pawar SK, Vavia PR. Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech. 2012;13(1):254–61. doi: 10.1208/s12249-011-9748-1.[PMC free article][PubMed][Cross Ref]

4. Shaji J, Lodha S. Response Surface Methodology for the Optimization of Celecoxib Self-microemulsifying Drug delivery System. Indian J Pharm Sci. 2008;70(5):585–90. doi: 10.4103/0250-474X.45395.[PMC free article][PubMed][Cross Ref]

5. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul. 2008;2(3):238–57.[PubMed]

6. Rahman MA, Harwansh R, Mirza MA, Hussain S, Hussain A. Oral lipid based drug delivery system (LBDDS): formulation, characterization and application: a review. Curr Drug Deliv. 2011;8(4):330–45.[PubMed]

7. Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21-22):958–65. doi: 10.1016/j.drudis.2010.08.007.[PubMed][Cross Ref]

8. Kale AA, Patravale VB. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech. 2008;9(1):191–6. doi: 10.1208/s12249-008-9037-9.[PMC free article][PubMed][Cross Ref]

9. Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv. 2006;3(1):97–110. doi: 10.1517/17425247.3.1.97.[PubMed][Cross Ref]

10. Wei L, Sun P, Nie S, Pan W. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm. 2005;31(8):785–94. doi: 10.1080/03639040500216428.[PubMed][Cross Ref]

11. Othman AA, Tenero DM, Boyle DA, Eddington ND, Fossler MJ. Population pharmacokinetics of S(-)-carvedilol in healthy volunteers after administration of the immediate-release (IR) and the new controlled-release (CR) dosage forms of the racemate. AAPS J. 2007;9(2):E208–18. doi: 10.1208/aapsj0902023.[PMC free article][PubMed][Cross Ref]

12. Salimi A, Sharif Makhmal Zadeh B, Moghimipour E. Preparation and characterization of cyanocobalamin (vit B12) microemulsion properties and structure for topical and transdermal application. Iran J Basic Med Sci. 2013;16(7):865–72.[PMC free article][PubMed]

13. Liu L, Pang X, Zhang W, Wang S. Formulation design and in vitro evaluation of silymarin-loaded self-micro emulsifying drug delivery systems. Asian J Pharm Sci. 2007;2(4):150–60.

14. Thakkar PJ, Madan P, Lin S. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation. Pharm Dev Technol. 2014;19(3):373–84. doi: 10.3109/10837450.2013.788658.[PubMed][Cross Ref]

15. Patil P, Joshi P, Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. AAPS PharmSciTech. 2004;5(3) doi: 10.1208/pt050342.[PMC free article][PubMed][Cross Ref]

Leave a Comment


Your email address will not be published. Required fields are marked *